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Abstract Gap junctions are plasma membrane domains

containing arrays of channels that exchange ions and small

molecules between neighboring cells. Gap junctional

intercellular communication enables cells to directly

cooperate both electrically and metabolically. Several lines

of evidence indicate that gap junctions are important in

regulating cell growth and differentiation and for main-

taining tissue homeostasis. Gap junction channels consist

of a family of transmembrane proteins called connexins.

Gap junctions are dynamic structures, and connexins have

a high turnover rate in most tissues. Connexin43 (Cx43),

the best-studied connexin isoform, has a half-life of 1.5–5

h; and its degradation involves both the lysosomal and

proteasomal systems. Increasing evidence suggests that

ubiquitin is important in the regulation of Cx43 endocy-

tosis. Ubiquitination of Cx43 is thought to occur at the

plasma membrane and has been shown to be regulated by

protein kinase C and the mitogen-activated protein kinase

pathway. Cx43 binds to the E3 ubiquitin ligase Nedd4, in a

process modulated by Cx43 phosphorylation. The interac-

tion between Nedd4 and Cx43 is mediated by the WW

domains of Nedd4 and involves a proline-rich sequence

conforming to a PY (XPPXY) consensus motif in the

C terminus of Cx43. In addition to the PY motif, an

overlapping tyrosine-based sorting signal conforming to

the consensus of an YXX/ motif is involved in Cx43

endocytosis, indicating that endocytosis of gap junc-

tions involves both ubiquitin-dependent and -independent

pathways. Here, we discuss current knowledge on the

ubiquitination of connexins.
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Introduction

Gap junctions are plasma membrane domains consisting of

arrays of intercellular channels that provide for diffusion of

ions and small molecules (<1 kDa) between neighboring

cells (Saez et al., 2003). In vertebrates, gap junction

channels are made of a family of transmembrane proteins

called connexins (Willecke et al., 2002). Gap junctional

intercellular communication (GJIC) enables cells to di-

rectly cooperate both electrically and metabolically. Gap

junctions have important roles in tissues containing elec-

trically excitable cells. For instance, electrical coupling via

gap junctions is important in synchronizing the contraction

of heart muscle (Severs et al., 2004). Furthermore, elec-

trical synapses via gap junctions are a ubiquitous feature of

neural circuits in the mammalian brain (Connors & Long,

2004). Gap junctions also have important roles in tissues

that do not contain electrically excitable cells. Several lines

of evidence indicate that gap junctions are important in

regulating cell growth and differentiation and for main-

taining tissue homeostasis (Loewenstein, 1979; Yamasaki

& Naus, 1996). Dysfunctional intercellular communication

via gap junctions has been implicated as a causative factor

in heart failure, neuropathologies, deafness, skin disorders

and cataracts (Mesnil, 2002; Wei, Xu & Lo, 2004). Gap

junctions have a high turnover rate, and many pathological

conditions are associated with abberant endocytic traf-

ficking of connexins. Increasing evidence suggests that
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ubiquitin plays a key role in gap junction endocytosis. This

review will discuss current knowledge on the ubiquitina-

tion of connexins.

Formation and Degradation of Gap Junctions

Connexins are expressed in most cell types, and most cells

and tissues usually express several different connexin iso-

forms (Bruzzone, White & Paul, 1996; Sohl, Maxeiner &

Willecke, 2005). There are 21 known connexins in the

human genome, of which the best studied is connexin43

(Cx43) (Sohl & Willecke, 2003). Connexins span the

membrane four times, and both the amino terminus and the

carboxy terminus are localized on the cytosolic side of the

membrane (Sosinsky & Nicholson, 2005). Connexins are

cotranslationally inserted into the endoplasmic reticulum

membranes and transported via the Golgi apparatus and the

trans-Golgi network to the plasma membrane (Segretain &

Falk, 2004) (Fig. 1). A subpopulation of the connexins,

presumably those with abnormal conformation, undergo

endoplasmic reticulum-associated degradation (ERAD)

(VanSlyke, Deschenes & Musil, 2000; VanSlyke & Musil,

2002). Along with their trafficking from the endoplasmic

reticulum to the plasma membrane, the connexins oligo-

merize into hexameric structures called connexons (Seg-

retain & Falk, 2004). Connexons can consist of identical or

different connexin isotypes (Sosinsky & Nicholson, 2005).

At the plasma membrane, the connexons can dock with

connexons in the adjacent cell and thereby form intercel-

lular channels (Segretain & Falk, 2004). These channels

are assembled in plasma membrane domains called gap

junctions. As observed by transmission electron micros-

copy, the two plasma membrane domains of a gap junction

are apparently separated by a gap of 2–3 nm (Goodenough

& Revel, 1970; Revel & Karnovsky, 1967). Connexons at
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Fig. 1 A working model for ubiquitination of Cx43. Cx43 is

synthesized at the endoplasmic reticulum and transported via the

Golgi apparatus and the trans-Golgi network to the plasma

membrane. When Cx43 reaches the plasma membrane, it has

oligomerized into connexons. Newly synthesized connexons are

added to the peripheries of existing gap junctions and dock with

connexons in the adjacent cell. During endocytosis of gap junctions,

both membranes of the junction are internalized into one of the

adjacent cells and form a connexosome. Degradation of connexo-

somes occurs in lysosomes, either by direct fusion between the two

organelles or by maturation of the connexosome into a multivesicular

endosome and trafficking of connexins via early and late endosomes

prior to connexin degradation in lysosomes. Degradation of Cx43 gap

junctions is also dependent on proteasomal activity. Phosphorylation

of Cx43 is thought to act as a signal for recruitment of an E3 ubiquitin

ligase, e.g., Nedd4, which ubiquitinates Cx43. Nedd4 can also bind to

Cx43 independently of the Cx43 phosphorylation state. In addition to

a ubiquitin-dependent pathway for Cx43 endocytosis, a ubiquitin-

independent pathway exists, in which the YXX/ motif in the Cx43 C

terminus is important

44 J Membrane Biol (2007) 217:43–51

123



the plasma membrane that are not part of gap junction

plaques, also called hemichannels, may have important

functions that do not involve direct intercellular commu-

nication (Stout, Goodenough & Paul, 2004).

Gap junctions are dynamic structures. Connexons are

continually added to the edges of existing gap junctions,

while channels are removed by endocytosis from the center

of the gap junction (Gaietta et al., 2002; Lauf et al., 2002).

Connexins usually have a high turnover rate, with a half-

life of 1.5–5 h (Crow et al., 1990; Fallon & Goodenough,

1981; Laird, Puranam & Revel, 1991; Traub et al., 1989).

During endocytosis of gap junctions, both membranes of

the junction are internalized into one of the adjacent cells

and thereby form a double-membrane vacuole called an

annular gap junction or connexosome (Jordan et al., 2001;

Laird, 2006; Larsen & Hai, 1978). Endocytosis of gap

junctions has been suggested to involve clathrin (Larsen

et al., 1979; Leithe & Rivedal, 2004a; Piehl et al., 2007).

Internalization of gap junctions requires proteasomal

activity (Fernandes, Girao & Pereira, 2004; Laing et al.,

1997; Laing & Beyer, 1995; Leithe & Rivedal, 2004a,b

Musil et al., 2000; Qin et al., 2003). However, the precise

role of the proteasome in gap junction endocytosis is not

known.

Following internalization of gap junctions, connexins

are degraded in lysosomes (Jordan et al., 2001; Laing et al.,

1997; Lan et al., 2005; Larsen & Hai, 1978; Mazet, Wit-

tenberg & Spray, 1985; Naus et al., 1993; Qin et al., 2003;

VanSlyke et al., 2000). Some electron microscopic studies

suggest that connexosomes are able to fuse directly with

lysosomes (Murray et al., 1981; Risinger & Larsen, 1983;

Vaughan & Lasater, 1990). Other electron microscopic

studies have shown that connexosomes sometimes contain

single membranes, presumably representing connexosomes

that have started their degradation process (Gregory &

Bennett, 1988; Larsen & Hai, 1978; Mazet et al., 1985;

Severs et al., 1989). Based on immunoelectron microscopic

experiments, we have suggested that internalized Cx43 gap

junctions undergo a maturation process from double-

membrane vacuoles to multivesicular endosomes with a

single limiting membrane (Leithe, Brech & Rivedal,

2006a). This transformation of the connexosome was found

to be associated with trafficking of Cx43 to the early and

late endosome, prior to degradation of Cx43 in lysosomes

(Leithe et al., 2006a).

Most connexin isoforms are phosphoproteins. Phos-

phorylation of connexins occurs primarily in the C-termi-

nal tail. Protein kinases that are involved in connexin

phosphorylation include mitogen-activated protein kinase

(MAPK), protein kinase C (PKC), protein kinase A (PKA),

cdc2/cyclinB, casein kinase 1, v-src and c-src (Lampe &

Lau, 2004). Phosphorylation of connexins regulates mul-

tiple steps in the life cycle of gap junctions, including

connexin trafficking to the plasma membrane, assembly of

connexons into gap junctions and gating of gap junction

channels. There is also significant evidence that phos-

phorylation of connexins is important in regulating the

internalization and degradation of gap junctions (Asamoto

et al., 1991; Hossain, Ao & Boynton, 1998; Laird, 2005;

Leithe & Rivedal, 2004a,b; Oh, Grupen & Murray, 1991).

Modulation of the gap junction turnover rate has been

suggested to be an important mechanism for regulating the

level of GJIC (Berthoud et al., 2004; Laird, 2005; Musil

et al., 2000; Thomas et al., 2003). There is increasing

evidence that ubiquitin is a key protein in the regulation of

gap junction degradation.

Ubiquitin

Ubiquitin is a 76-amino acid globular protein that is highly

conserved in eukaryotic cells (Hershko & Ciechanover,

1998). Ubiquitin is able to be covalently conjugated to

other proteins in a process called ubiquitination. Covalent

conjugation of ubiquitin is essential for the proteolysis of

most proteins, during both constitutive degradation and

degradation as a result of changes in the cellular environ-

ment. Conjugation of ubiquitin to a protein can also reg-

ulate its activity or location. Ubiquitin is involved in a

variety of cellular processes and is essential in regulating

cell growth, proliferation and differentiation. Dysfunction

of ubiquitin-mediated processes is causally related to var-

ious diseases, including malignant transformation (Glick-

man & Ciechanover, 2002).

Ubiquitin is conjugated to other proteins by forming a

bond between the carboxy-terminal glycine of ubiquitin

and the e-NH2 group of a lysine residue on the substrate

protein. Ubiquitin can also be conjugated to the a-NH2

group of the N-terminal amino acid of the substrate (Ben

Saadon et al., 2004; Ciechanover & Ben Saadon, 2004).

Ubiquitination is a multistep process that involves the

sequential action of three classes of enzymes (Pickart,

2001). First, a ubiquitin-activating enzyme, called E1,

forms a thiol-ester bond with the C terminus of ubiquitin

(glycine76) in an adenosine triphosphate-dependent man-

ner. Then, a ubiquitin-conjugating enzyme, known as E2,

accepts ubiquitin from E1 by a trans-thiolation reaction.

Finally, a ubiquitin ligase, known as E3, catalyses the

transfer of ubiquitin from the E2 enzyme to the substrate

protein.

Proteins destined for proteasomal degradation are usu-

ally conjugated to a polyubiquitin chain in which succes-

sive ubiquitins are linked by lysine48-glycine76 isopeptide

bonds (Chau et al., 1989). Proteins can also be conjugated

to a single ubiquitin, multiple monoubiquitins or poly-

ubiquitin chains in which the ubiquitins are linked through
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other lysine residues than lysine48, e.g., lysine63. Such

protein modifications are involved in various nonprote-

asomal processes, e.g., DNA repair and endocytosis (Hof-

mann & Pickart, 1999; Spence et al., 2000).

In most organisms, including humans and yeast, there is

one E1 enzyme (McGrath, Jentsch & Varshavsky, 1991;

Zacksenhaus & Sheinin, 1990). There are several E2 family

members. For instance, Saccharomyces cerevisiae encodes

13 E2s, while there are at least 25 E2s in mammalian cells

(Weissman, 2001). Database analysis suggests that approx-

imately 1,000 E3s exist in yeast and mammalian cells

(Pickart & Eddins, 2004). Thus, the organization of the

ubiquitin conjugating cascade is hierarchical (Glickman &

Ciechanover, 2002). E3s are crucial in determining the

timing and substrate selection in ubiquination reactions.

Thus, E3s are the key regulatory determinants in the ubiq-

uitination process. The E3 ubiquitin ligases can be classified

into three major families: (1) HECT (homologous to E6-AP

carboxy terminal) E3s, (2) RING (really interesting new

gene) E3s and (3) the U-box E3s.

The discovery of the HECT E3s was a consequence of

the finding that oncogenic human papillomaviruses encode

a protein called E6 that specifically induces degradation of

p53 (Mantovani & Banks, 2001). It was found that E6

serves as an adaptor between p53 and the cellular protein

E6-associated protein (E6-AP). E6-AP was identified as a

ubiquitin ligase that induces polyubiquitination and prote-

asomal degradation of p53 (Scheffner et al., 1990, 1993).

Subsequently, a family of proteins that are closely related

to E6-AP in an approximately 350-residue region at their

carboxyl termini, termed the HECT domain, was identified

(Huibregtse et al., 1995). Within the HECT domain is a

strictly conserved cysteine residue that acts as a site for

thiol ester formation with ubiquitin transferred from an E2.

This cysteine residue is essential for substrate ubiquitina-

tion. Thus, HECT domain E3s participate directly in

catalysis by forming a bond with ubiquitin during the

ubiquitination reaction. Another feature sheared by many

HECT E3s, but not E6-AP, is the WW domain, a short

motif that can bind phosphoserine and phosphothreonine or

PY (XPPXY, where P is proline, X is any amino acid and

Y is tyrosine) motifs in the target protein and thereby

mediate substrate recognition (Nguyen et al., 1998).

Besides E6-AP, the best-characterized HECT E3 is the

essential S. cerevisiae enzyme Rsp5. Rsp5 ubiquitinates at

least 13 plasma membrane channels and receptors (Dupre,

Urban-Grimal & Haguenauer-Tsapis, 2004). For these

substrates, the consequence of ubiquitination is internali-

zation. Rsp5 also ubiquitinates soluble proteins, of which

the best known is Rbp1, the large subunit of RNA poly-

merase II (Huibregtse, Yang & Beaudenon, 1997). In this

case, ubiquitination leads to proteolysis by proteasomes.

The properties of Rsp5 are conserved in mammalians. The

mammalian orthologue of Rsp5 is Nedd4 (neural precursor

cell expressed, developmentally downregulated 4) (Ing-

ham, Gish & Pawson, 2004). The best-known substrate of

Nedd4 is ENaC (amiloride-sensitive epithelial sodium

channel). Nedd4 binds to a PY motif in ENaC via its WW

domain and ubiquitinates lysine residues within the ENaC

cytoplasmic region (Schild et al., 1996; Staub et al., 1996,

1997). This results in downregulation of the channel, pre-

sumably through internalization and degradation via the

lysosomal pathway.

The second family of E3 ligases, the RING E3s, con-

stitute the majority of the E3 ligases. The RING E3s are

characterized by a series of histidine and cysteine residues

with a spacing that allows for the coordination of two zinc

ions in a cross-brace structure called the ‘‘RING finger’’

(Vandemark & Hill, 2002). The RING fingers of E3s can

bind E2s. Other domains of E3 bind the substrate. In

contrast to the HECT E3s, the RING E3 does not bind

ubiquitin but is thought to help transfer ubiquitin directly

from E2 to the substrate by forming a tight bond between

E2 and substrate.

RING E3s can be classified as either single subunits or

multisubunits. The single-subunit E3s consist of just the

RING finger E3 protein. For instance, the E3 Mdm2

(mouse double minute 2), a RING E3 responsible for

constitutive ubiquitination of p53, contains both a p53-

binding domain and an E2-binding RING finger (Capili

et al., 2001; Fang et al., 2000). Another single-subunit E3 is

Cbl (Casitas B-cell lymphoma). Cbl is critically involved

in the ubiquitination and downregulation of receptor tyro-

sine kinases, including the epidermal growth factor (EGF)

and platelet-derived growth factor receptors (Joazeiro

et al., 1999; Levkowitz et al., 1999). Deletions that disrupt

the Cbl RING abrogate EGF-induced degradation, and

these mutant proteins can be oncogenic.

In multisubunit E3s, the RING finger protein is one

subunit of a multiprotein complex (Petroski & Deshaies,

2005). These E3s contain a RING finger subunit that

functions in E2 recruitment. In addition, they contain a

member of the Cullin protein family that binds the RING

finger protein and structural adaptors that link the Cullin to

substrate recognition elements. The archetypal multisub-

unit E3s are the SCF (Skp1-Cullin1-F-box protein)

ubiquitin ligases (Feldman et al., 1997; Skowyra et al.,

1997). SCF E3s have important roles in the regulation of

the G1/S cell cycle transition.

The third family of E3 ligases, the U-box E3s, is a rel-

atively small group (Cyr, Hohfeld & Patterson, 2002).

Similar to RING E3s, the U-box E3s function as bridging

factors between the E2 and the substrate. Many known

substrates of U-box E3s are misfolded proteins, including

the fibrosis transmembrane receptor and the glucocorticoid

receptor (Connell et al., 2001).
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The ubiquitination of proteins is often tightly regulated

(Gao & Karin, 2005). Several mechanisms are known to

underlie this regulation. For instance, the activity of E3

may be turned on by E3 phosphorylation. Ubiquitination of

a substrate can also be regulated by covalent modifications

of the substrate that affect the interaction between E3 and

the substrate. E3 ligases have substrate-interacting domains

that recognize a specific sequence or structural element in

the substrate. Modifications of the E3-binding domains of

the substrate, e.g., by phosphorylation, glycosylation,

acetylation or hydroxylation, are known to modulate the

recognition of substrates by their cognate E3s (Fang &

Weissman, 2004). This increases the repertoire of sub-

strates that can be targeted to a given ligase and links

protein ubiquitination and turnover to numerous signaling

pathways.

Ubiquitination is a dynamic and reversible process.

Deubiquitinating enzymes cleave ubiquitin from proteins

and disassemble ubiquitin chains (Wing, 2003). Since

ubiquitin is a long-lived protein and is normally reused

several times, deubiquitinating enzymes play crucial roles

in many cellular processes.

Ubiquitination of Cx43

Laing & Beyer published in 1995 the first evidence that

ubiquitin is involved in Cx43 degradation. The authors

used the Chinese hamster ovary cell line CHO-ts20, which

expresses a thermolabile E1 ubiquitin-activating enzyme. It

was found that the Cx43 protein level was increased under

conditions in which the ubiquitin-activating enzyme was

defective, indicating the involvement of ubiquitin in Cx43

degradation (Laing & Beyer, 1995). The data also indicated

that ubiquitin can be conjugated to Cx43. It was suggested

that ubiquitination of Cx43 could play a role both in ERAD

of Cx43 and in Cx43 endocytosis (Laing et al., 1997; Laing

& Beyer, 1995).

Subsequent experiments in our laboratory indicated that

ubiquitination of Cx43 can be regulated by phosphoryla-

tion (Leithe & Rivedal, 2004a). As a model system to study

endocytosis of Cx43 gap junctions, we used the rat liver

epithelial cell line IAR20, which under normal growth

conditions expresses relatively high levels of Cx43

endogenously, most of which is organized as gap junctions

at the plasma membrane. In agreement with previous

studies, EGF-induced phosphorylation of Cx43 was found

to be associated with inhibition of gap junction channels.

EGF was also found to induce internalization and degra-

dation of Cx43 gap junctions. We hypothezised that EGF-

induced phosphorylation is a signal for conjugation of

ubiquitin to Cx43. Coimmunoprecipitation studies sup-

ported this hypothesis (Leithe & Rivedal, 2004a). The

EGF-induced ubiquitination of Cx43 was found to occur

concomitantly with Cx43 hyperphosphorylation and inter-

nalization of Cx43 gap junctions. The EGF-induced hy-

perphosphorylation, ubiquitination, internalization and

degradation of Cx43 were found to be mediated by the

MAPK pathway. Based on these observations, we hy-

pothezised that phosphorylation of Cx43 could act as a

binding site for a ubiquitin ligase, which would induce

Cx43 ubiquitination (Leithe & Rivedal, 2004a). It is cur-

rently unclear whether the ability of EGF to induce ubiq-

uitination and endocytosis of Cx43 gap junctions is specific

to rat liver epithelial cells or whether this also occurs in

other cell types. However, heparin-binding EGF has been

suggested to induce internalization and degradation of

Cx43 in cardiomyocytes (Yoshioka et al., 2005).

The tumor-promoting PKC activator 12-O-tetradeca-

noylphorbol-13-acetate (TPA) induces hyperphosphoryla-

tion of Cx43 and inhibition of GJIC in several cell types

(Berthoud et al., 1993; Enomoto et al., 1984; Leithe et al.,

2003; Murray & Fitzgerald, 1979; Yotti, Chang & Trosko,

1979). TPA also induces loss of Cx43 at the plasma

membrane and Cx43 degradation (Asamoto et al., 1991;

Leithe & Rivedal, 2004b; Rivedal, Yamasaki & Sanner,

1994). The TPA-induced degradation of Cx43 was asso-

ciated with strongly increased ubiquitination of Cx43

(Leithe & Rivedal, 2004b). The TPA-induced ubiquitina-

tion of Cx43 involved both PKC and the MAPK pathway.

Coimmunoprecipitation studies indicated that Cx43 is

modified by one to four ubiquitins in response to TPA or

EGF treatment. Experiments using antibodies that differ-

entiate between mono- and polyubiquitinated proteins

suggested that Cx43 under these conditions is modified by

multiple monoubiquitins rather than a polyubiquitin chain

(Leithe & Rivedal, 2004b).

A recent study by Leykauf et al. (2006) supports the

hypothesis that phosphorylation and ubiquitination of Cx43

are tightly linked processes. Using the rat liver epithelial cell

line WB-F344, the authors found that Cx43 binds the rat E3

ubiquitin ligase Nedd4 in both cell-free and cellular systems.

All three WW domains of rat Nedd4 were observed to bind to

rat Cx43. It was suggested that phosphorylation of Cx43 was

not indispensable for Nedd4 binding. However, it was found

that phosphorylation of Cx43 may modulate the binding of

Nedd4. The Cx43 C-terminal sequence contains a proline-

rich region corresponding to the consensus of a PY motif

(Thomas et al., 2003). Such PY motifs have been shown to

act as ligands for WW domain-containing proteins, includ-

ing the Nedd4/Nedd4-like family of E3 ubiquitin ligases

(Ingham et al., 2004). Leykauf et al. (2006) found that WW2

is the only rat Nedd4 WW domain that binds robustly to the

PY motif of Cx43.

The PY motif of Cx43 is overlapped by a tyrosine-based

sorting signal conforming to the consensus of a YXX/
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(where Y is tyrosine, X is any amino acid and / is an

amino acid with a bulky hydrophobic side chain) motif

(Thomas et al., 2003). This motif is found in the cytosolic

domains of several plasma membrane proteins (Bonifacino

& Traub, 2003). The motif is involved in mediating

internalization from the plasma membrane as well as tar-

geting certain proteins to lysosomes (Canfield et al., 1991;

Williams & Fukuda, 1990). Similarly to other tyrosine-

based sorting signals, the YXX/ motif mediates endocy-

tosis by interacting with components of coated domains

involved in protein sorting, localized at the plasma mem-

brane or on endosomes (Bonifacino & Traub, 2003). For

instance, YXX/ signals have been shown to interact with

AP-2, an adaptor protein found in clathrin coats at the

plasma membrane (Honing et al., 1996; Ohno et al., 1995).

Thomas et al. (2003) have shown that the tyrosine residue

at position 286, which is essential for the function of both

the PY and the YXX/ motifs, is a crucial amino acid in-

volved in turnover of Cx43 transfected in the human

hepatocellular carcinoma cell line SKHep1. A mutational

analysis of the region around tyrosine286 suggested that

the YXX/ motif plays a major role in regulating Cx43

endocytosis. Substitution of the proline residue at position

283 in the PY motif was found to have only a minor effect

on Cx43 endocytosis. These results suggest that in SKHep1

cells the tyrosine-based motif is more important than the

PY motif in Cx43 turnover under normal growth condi-

tions.

When Cx43 endocytosis is counteracted by hypertonic

medium, which blocks clathrin-mediated endocytosis,

ubiquitinated forms of Cx43 accumulate (Leithe & Rive-

dal, 2004a). Based on these observations, we have sug-

gested that Cx43 ubiquitination occurs at the plasma

membrane. Leykauf et al. (2006) found that depletion of

Nedd4 by RNA interference caused accumulation of Cx43

gap junctions at the plasma membrane. It was also found

that Nedd4 colocalized with Cx43 both at the plasma

membrane as well as in intracellular vesicles. Taken to-

gether, these results suggest that ubiquitin might play a role

in the internalization of Cx43 gap junctions. Further studies

are required to define the role of ubiquitin in Cx43 gap

junction endocytosis.

Internalization of Cx43 gap junctions requires prote-

asomal activity (Fernandes et al., 2004; Laing et al., 1997;

Laing & Beyer, 1995; Leithe & Rivedal, 2004a,b; Musil

et al., 2000; Qin et al., 2003). However, the precise role of

the proteasome in gap junction endocytosis is not known.

Proteasomal inhibitors were found to counteract TPA- and

EGF-induced ubiquitination of Cx43 (Leithe & Rivedal,

2004b). This opens the possibility that the proteasome

might play an indirect role in endocytosis of Cx43 by

affecting the Cx43 ubiquitination level. However, the

proteasome might also play additional roles in gap junction

endocytosis, and further studies are required to understand

the function of the proteasome in Cx43 degradation.

Ubiquitin and Cx26

OCP1 (organ of Corti protein1) is abundantly expressed in

the organ of Corti (Chen et al., 1995; Henzl et al., 2001,

2004). Sequence data suggest that OCP1 harbors a con-

sensus F-box motif and is a subunit of a SCF E3 ubiquitin

ligase (Henzl et al., 2001, 2004). Interestingly, Henzl et al.

(2001, 2004) have shown that OCP1 binds Cx26, one of the

major gap junction proteins in the epithelial support com-

plex of the organ of Corti. Further studies are needed to

determine the OCP1 binding site on Cx26 and the role of

this interaction in Cx26 trafficking.

Conclusions

Several lines of evidence indicate that ubiquitination of

Cx43 is important in regulating Cx43 degradation. Ubiq-

uitination of Cx43 appears to occur at the plasma mem-

brane. Thus, ubiquitin might be involved in the

internalization process of Cx43 at the plasma membrane

but could also be involved in the subsequent intracellular

trafficking of Cx43. An important subject for future studies

will be to determine what role ubiquitin might play in Cx43

gap junction endocytosis. In this regard, it will also be

important to define the ubiquitin conjugating sites on Cx43.

Dysfunctional intercellular communication via gap

junctions has been implicated as an important factor in

many pathological conditions, including cancer (Mesnil,

2002; Wei et al., 2004). Often, such loss of gap junctional

communication can be attributed to aberrant trafficking of

connexins (Leithe et al., 2006b). It will in the future be

important to investigate whether this dysfunction in conn-

exin trafficking can be due to aberrant connexin ubiquiti-

nation.
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